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Different forms of learning and memory depend on functionally and
anatomically separable neural circuits [Squire, L. R. (1992) Psychol.
Rev. 99, 195–231]. Declarative memory relies on a medial temporal
lobe system, whereas habit learning relies on the striatum [Cohen,
N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal
System (MIT Press, Cambridge, MA)]. How these systems are engaged
to optimize learning and behavior is not clear. Here, we present
results from functional neuroimaging showing that the presence of a
demanding secondary task during learning modulates the degree to
which subjects solve a problem using either declarative memory or
habit learning. Dual-task conditions did not reduce accuracy but
reduced the amount of declarative learning about the task. Medial
temporal lobe activity was correlated with task performance and
declarative knowledge after learning under single-task conditions,
whereas performance was correlated with striatal activity after dual-
task learning conditions. These results demonstrate a fundamental
difference in these memory systems in their sensitivity to concurrent
distraction. The results are consistent with the notion that declarative
and habit learning compete to mediate task performance, and they
suggest that the presence of distraction can bias this competition.
These results have implications for learning in multitask situations,
suggesting that, even if distraction does not decrease the overall level
of learning, it can result in the acquisition of knowledge that can be
applied less flexibly in new situations.

hippocampus � learning � striatum

Evidence from humans and other animals has shown that there
are multiple memory systems defined by different neural

substrates and functional demands (1, 2). Declarative memory
supports the acquisition of flexibly accessible knowledge and
relies on the medial temporal lobe (MTL), whereas habit
learning involves the gradual acquisition of behavioral tenden-
cies and relies on the striatum (3, 4). An important question
about these memory systems is how their engagement is mod-
ulated to optimize learning and behavior. A hypothesis of
competition between memory systems has been proposed based
on lesion studies in experimental animals (4). This hypothesis
predicts that either the striatum or MTL can support learning,
depending on task conditions. In experimental animals, the
contributions of separate learning mechanisms to performance
have been probed by using a plus-maze: If ‘‘place’’ learning
(which depends on the hippocampus) is supporting perfor-
mance, the behavior on a probe test will be different from that
supported by ‘‘response’’ learning (which depends on the stria-
tum) (5). Furthermore, the engagement of learning mechanisms
supported by either the hippocampus (declarative memory) or
the striatum (habit learning) can be modulated pharmacologi-
cally (6, 7) to show that performance on a particular task can rely
on either system. Analogs of maze tasks and navigation tasks
have been used to study memory systems in humans (8–11). In
studies of human navigation, different types of tasks typically
engage separate learning mechanisms, or different strategies
lead to different levels of performance. However, it has been
difficult to directly manipulate the engagement of these systems
in humans within a single task or show differential engagement
beyond navigation tasks.

Habit learning has been examined in humans by using a proba-
bilistic classification task (PCT) (3, 12). In this task (Fig. 1), subjects
learn to classify stimuli into two categories, based on trial-by-trial
feedback. The striatum has been shown to contribute to PCT
performance: Learning is impaired in patients with basal ganglia
disorders (13, 14), and performance is associated with activation of
the striatum and midbrain (substantia nigra�ventral tegmental
area) in normal subjects (15–18). Although the MTL may not be
necessary for some degree of learning in the PCT (12), there is
evidence that healthy people do engage MTL-dependent learning
mechanisms: These subjects exhibit flexible declarative knowledge
about the task, whereas amnesic patients with MTL lesions are
impaired at acquiring flexible knowledge, even though their overall
classification performance may be normal (19). Flexible knowledge
refers to knowledge that can be applied in a novel situation outside
the training context. Furthermore, mild Parkinson’s disease pa-
tients are able to learn the PCT to some extent, but they engage the
MTL more during PCT performance than do healthy controls (18).
The fact that these two types of learning, which depend on separate
memory systems, may be acquired within the same task makes the
PCT a useful tool for investigating interactions between memory
systems.

We hypothesized that the contribution of these memory systems
to performance could be modulated by distraction. Learning of
habits is associated with automaticity, such that performance does
not require effortful attention or working memory, whereas de-
clarative memory tasks are generally sensitive to the presence of a
distracting secondary task that does engage these processes (20).
Declarative memory performance is aided by elaborative encoding
and effortful retrieval, processes that depend on prefrontal cortex
and working memory resources. Therefore, we hypothesized that
one factor modulating these systems might be the presence of a
distracting secondary task. By occupying working memory, a sec-
ondary task should decrease declarative memory encoding and,
thus, bias the competition in favor of habit memory mechanisms
mediating performance.

To determine whether a secondary task modulates the neural
systems involved in performing the PCT, we trained 14 partic-
ipants on two different classification problems while they were
scanned by using functional MRI (fMRI). Participants were
trained on one problem under single-task (ST) conditions and on
the other problem while performing a concurrent tone-counting
task. During training, subjects learned the categories based on
trial-by-trial feedback. After training, subjects received an ad-
ditional block of probe trials using a mixed event-related (ER)
fMRI paradigm, during which they classified items that had been
trained under either ST or dual-task (DT) conditions. To
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measure how well participants had learned under each condition,
no feedback was presented during the probe block, and all items
were presented under ST conditions. After scanning, subjects
completed an assessment of their declarative knowledge about
the cue–outcome associations, which required flexible use of
their knowledge about the task (19).

Results
Behavior. The secondary task impaired classification perfor-
mance numerically during training, although this difference was
only marginally significant in run 2 [t(12) � 1.973, P � 0.072]. In
a 2(ST�DT) � 2(run 1�run 2) � 2(order) ANOVA, there was
a main effect of run, F(1, 11) � 6.53, P � 0.027. No other effects
were significant, P � 0.05 (Fig. 2a). These results are consistent
with previous data showing that learning in the PCT can proceed

normally under DT conditions (21). Performance on the sec-
ondary task during training was consistently high (significantly
above chance, P � 0.001) but below ceiling levels (accuracy: run
1, 78%; run 2, 85%; see Table 2, which is published as supporting
information on the PNAS web site). One subject was excluded
from analyses because of poor classification performance
(�22% correct) on ST items during the probe task. On the probe
test, where both tasks were performed under ST conditions,
accuracy and response times were not significantly different for
items trained under ST versus DT conditions, showing that DT
conditions did not impair classification learning [accuracy,
t(12) � 0.98, P � 0.35; see Fig. 2b; response time, M � 1.39 s,
and mean � 1.41 s, t(12) � �0.40, P � 0.698]. Although
performance was numerically higher for items learned under ST
conditions, approximately half of subjects (6 of 13) performed
better on the DT items than ST, and the other half showed the
opposite pattern, consistent with our previous findings of no
effect of DT conditions on learning in this task.

Although probe performance was similar for the two training
conditions, the tests of declarative knowledge showed that
performance of the secondary task effectively impaired acqui-
sition of flexible knowledge about cue–outcome associations.
Subjects were significantly better at selecting which cues were
associated with a particular outcome for items learned under ST
conditions (t(11) � �3.36, P � 0.006; Fig. 2c). In the cue-
estimation task, scores were numerically less accurate (i.e.,
farther from the true target value), but this difference was not
significant (t(12) � �1.65, P � 0.12). These results demonstrate
a dissociation between classification accuracy (which was not
affected by DT conditions at encoding) and declarative knowl-
edge of cue–outcome associations (which was affected).

fMRI Results. fMRI of training runs. Comparison of fMRI signals
during DT versus ST learning conditions showed a number of

Fig. 1. Schematic of experimental design and task structure. (a) Tone-counting task: Participants kept a running count of the number of high tones in a stream
of high- and low-pitched tones. This task was subsequently used as the secondary task. (b) Participants learned to predict weather outcomes (rain or sun) for two
different cities. Three seconds were allowed for responding, after which feedback was provided. During training, high and low tones were played. Participants
ignored the tones on the ST blocks and counted the high tones on DT blocks. (c) After five trials of weather prediction, subjects indicated how many high tones
they had counted (or selected the high number on ST blocks). ST and DT order was counterbalanced across participants. (d) On baseline trials, participants pressed
with their index finger in response to the stimulus. One run of weather prediction consisted of 10 cycles of five weather trials and three baseline trials. (e) During
the probe test, participants predicted weather, as during training, but did not receive feedback. No tones were played during the probe trials. During the probe
run, trials of task learned under ST and DT conditions were intermixed. RESP, response; ITI, intertrial interval.

Fig. 2. Behavioral results. The percentages of correct responses are shown.
(a) PCT performance during training runs 1 and 2 for ST and DT. (b) PCT
performance during the probe test. (c) Cue-selection scores. Scores ranged
from 1 to 4 (chance � 2.5). Error bars are standard errors.
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differences, consistent with the fact that DT learning conditions
were more demanding (e.g., there was greater dorsolateral pre-
frontal cortex activity during DT conditions than during ST con-
ditions, see Supporting Text and Table 3, which are published as
supporting information on the PNAS web site). However, activity
in the striatum did not differ between conditions, consistent with
the equal engagement of striatal learning mechanisms regardless
of learning conditions. Other work has also suggested that stria-
tal learning mechanisms are equally active across implicit and
explicit learning conditions during motor-sequence learning (22),
consistent with the notion that habit-learning mechanisms are
automatically and obligatorily engaged when a task is performed.
fMRI of probe run. fMRI signals during the probe test were
compared to see whether the different characteristics of what
had been learned in each condition, as seen in the behavioral
results, were reflected in differential engagement of separate
memory systems. The probe task data were examined to com-
pare items learned under either ST or DT conditions. Although
classification accuracy did not differ between conditions, there
were significant differences in neural activity between conditions
(see Table 1). These data suggested that the memory systems
supporting task performance differed, depending on the condi-
tions under which the subject learned the particular problem.

This result was further investigated by examining the relation
between behavioral performance and brain activity during
probe-task performance, even when overall levels of perfor-
mance did not differ between the training conditions. Measures
of accuracy (and declarative knowledge) were entered into
regression analyses to find areas where brain activity during
correct probe test performance was correlated with perfor-
mance measures. These analyses revealed separate regions in the
MTL and striatum that were differentially correlated with
performance on items learned under ST and DT conditions
[small volume correction (SVC), P � 0.05; Fig. 3 a and c]. To
examine whether these results represented a dissociation, we
extracted a measure of the brain activity in these regions for
items learned under each condition, allowing direct comparison
of the relationship between brain activity and performance using
robust regression analyses. Activity in the right hippocampus was
significantly correlated with performance on items learned

under ST conditions (r � 0.746, P � 0.003) but not for items
learned under DT conditions (r � �0.017, P � 0.955; Fig. 3b),
representing a dissociation between items learned under ST and
DT conditions in the MTL region. The putamen showed the
opposite pattern, with activity level correlated with performance
on items learned under DT conditions (r � 0.729, P � 0.005) but
not ST conditions (r � 0.117, P � 0.704; Fig. 3d), representing

Table 1. Activations during probe test (correct trials only)

Brain region Max Z x, mm y, mm z, mm
Cluster

extent, voxels

ST correct � DT correct
R lingual gyrus 3.92 8 �66 0 1,831
L cuneus 3.82 �6 �72 4
L posterior cingulate 3.64 �10 �70 10
L precuneus 3.63 �2 �64 38
R posterior cingulate 3.48 4 �62 4
L cuneus 3.44 �4 �66 6
R caudate body 3.52 16 �8 26 756
R anterior cingulate 3.46 6 14 �10
R thalamus 3.39 10 �22 14
R nucleus accumbens 3.19 10 6 �10
R globus pallidus 3.16 10 4 �2
R thalamus 3.14 24 �28 10
L thalamus 3.96 �6 �22 14 629
L thalamus 3.95 �16 �14 0
L thalamus 3.55 �18 �24 16
L thalamus 3.54 �14 �14 4
L cingulate cortex 3.12 �18 �12 28
L caudate body 3.12 �16 �6 24

Three top significant clusters from the whole-brain analysis. Five local maxima are included. L, left; R, right. DT
correct � ST correct, no significant clusters.

Fig. 3. Correlations between accuracy and brain activity during the probe
task. (a) Activity in the right hippocampus was significantly correlated with
performance of the PCT learned under ST conditions (SVC, P � 0.05). (b) During
the ST, but not the DT, activity was significantly correlated with performance.
(c) Activity in the left putamen was correlated with performance of the PCT
learned under DT conditions (SVC, P � 0.05). (d) During DT, but not ST, activity
was significantly correlated with performance. Regression lines and P values
plotted are from the robust regression results. The x axes in b and d represent
signal change (arbitrary units). MNI coordinates are displayed under the
figure. (L � R in images).
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a dissociation between items learned under ST and DT condi-
tions in the striatal region. Each pair of correlations was
significantly different (Ps � 0.05), and they were in opposite
directions, thus representing a double dissociation. A double
dissociation between the two regions was confirmed by a re-
gression analysis that compared the two differences in correla-
tion (P � 0.017). These results show that distraction during
learning modulated the degree to which the MTL or striatum was
involved in later task performance.

Dual-task conditions during learning also reduced the level of
subsequent flexible declarative knowledge about the task (Fig. 2c).
We assessed the relation between neural activity and cue–outcome
knowledge to confirm the role of the MTL in flexible knowledge
acquisition on this task. A simple regression analysis, as described
above, identified regions that were correlated with participants’
cue-knowledge scores. During trials where subjects classified items
previously learned under ST conditions, task-related activity within
the MTL was significantly correlated with the measure of flexible
declarative knowledge (Fig. 4a; SVC P � 0.05). No such correlation
was seen during trials of the PCT learned under DT conditions. To
further compare the response of the MTL during performance of
each task, we extracted the mean activity for each subject from the
left MTL during performance of each task and tested the corre-
lations with explicit-knowledge scores (Fig. 4b). We repeated the
same procedure for the corresponding location on the right side
(Fig. 4c). The correlations were significantly different between
items learned under ST versus DT conditions for both the left (ST,
r � 0.854; DT, r � 0.258, P � 0.041) and right (ST, r � 0.779; DT,
r � �0.131, P � 0.005) MTL (see also Table 4, which is published
as supporting information on the PNAS web site).

Discussion
The results demonstrate that equivalent levels of learning on the
PCT can be supported by either the MTL or the striatum and that
distraction by a secondary task modulates the relative engagement
of these systems. These data provide the most direct evidence to
date for contributions from separate memory systems to perfor-
mance of the same task and also demonstrate that the relative
contribution from these memory systems can be modulated by task
conditions. The results add to extensive evidence that declarative
memory encoding depends on working memory. In contrast, habit
learning in the PCT does not appear to be nearly as sensitive to
available working-memory resources. The apparent lack of sensi-
tivity to the concurrent performance of a secondary task may be a
distinguishing feature of habit learning. Other forms of nondeclara-

tive memory (e.g., priming) do appear to sometimes be affected by
divided attention at study (23), suggesting that different forms of
nondeclarative memory differ in terms of their reliance on available
working-memory resources, just as these abilities also differ in
terms of their neural substrates.

Evidence from neuropsychological patients has demonstrated
that performance on the PCT can be independent of the integrity
of MTL structures (12). The present results are consistent with
these findings in that they demonstrate that normal PCT perfor-
mance can occur independently of MTL activation, as was shown
for the DT PCT. However, the present results do indicate that, in
young, neurologically intact subjects, performance on the PCT is
associated with MTL activity when learning occurs under ST
conditions. It appears that the PCT can be learned by using
different brain systems, depending on the task demands, and it is
likely that manipulations that enhance declarative learning of the
cue–outcome associations, such as making the associations less
probabilistic, decreasing the number of stimuli, or increasing study
time, will enhance the contribution of the MTL structures to
performance. In support of the idea that there are multiple routes
of learning in the PCT, impaired performance has been detected in
patients with MTL damage when slightly more deterministic asso-
ciations were used than in previous studies (24). Furthermore, the
patients and control subjects in this study were, on average, �20
years younger than the participants in previous work showing intact
performance in amnesic patients. If declarative memory is more
efficient in younger subjects, it may be that younger normal subjects
are more likely to engage the MTL during performance of the PCT
than older subjects.

Neuroimaging studies have consistently shown that the MTL is
less active during classification learning compared with a variety of
baseline tasks (15–17), a finding replicated in this study. The
correlations observed here between behavior and MTL activity
thus occurred against a background of relative ‘‘deactivation’’ in the
MTL. This result suggests that the overall level of activity in the
MTL may be less indicative of its role in behavior than is its relation
to performance. Consistent with this view, a number of recent
studies have shown that baseline tasks in functional imaging studies
can be relatively active conditions for the MTL (e.g., ref. 25). Thus,
relative ‘‘deactivation’’ of the MTL during the PCT may be more
reflective of the engagement of the MTL during the baseline task
than of active suppression of MTL activity during classification
learning.

In humans, the MTL memory system appears to dominate
learning on many tasks. Our data suggest that the striatal system is

Fig. 4. Correlations between declarative knowledge and brain activity during the probe task. (a) Regions correlated with declarative cue knowledge of PCT
learned under ST conditions (SVC, P � 0.05). Significant correlations were found in both left and right MTLs during performance on items learned under ST
conditions. Correlations between declarative knowledge and brain activity for items learned under DT conditions were not significant. Regression lines and P
values plotted are from the robust regression results. The x axes represent signal change (arbitrary units), and the y axes represent declarative knowledge z scores.
The absolute difference between cue estimates and actual values and the cue-selection scores were transformed to z scores and averaged separately for the ST
and DT scores (therefore, the significant difference between declarative knowledge for items learned under ST and DT conditions is not apparent in these
figures). This composite score represented a general measure of each participant’s flexible knowledge of cue–outcome associations. (b) Activity in the right MTL
correlated with cue knowledge during ST performance. (c) Activity in the left MTL correlated with cue knowledge during ST performance. MNI coordinates are
displayed under the figure. (L � R in images).
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able to mediate performance in the case where some other factor
(such as a secondary task) has prevented development of sufficient
explicit knowledge to perform the task. It is not possible to
determine from the present data whether development of explicit
knowledge under ST conditions prevented habit learning or simply
diminished its contributions to performance. However, the pattern
of activity during learning of the tasks suggests that striatal regions
associated with habit learning were engaged equally during training
regardless of the secondary task (see ref. 22). This finding suggests
that separate memory systems may acquire redundant information
and that any potential competition between memory systems may
then be occurring at a stage when the knowledge is applied rather
than during acquisition of the task (see ref. 26). Thus, competition
appears to be occurring at the response level. Although a habit
representation in the putamen may be activated in the task, it does
not appear to influence behavior when declarative representations
are robust. Such an interpretation would be consistent with findings
in experimental animals. Experiments querying the different types
of representations acquired by rats in the plus-maze indicate that,
although one type of knowledge may be governing performance,
redundant representations still exist. For example, inactivation of
the dorsal striatum can reinstate a response strategy that depends
on the MTL (7), showing that, although the knowledge is not
applied, it is still accessible.

It is important to note that, although either the MTL or striatal
system was able to support performance on the weather prediction
task, the nature of what is learned by each system differs (see ref.
6). Our results indicate that the learning that is supported by the
MTL and by the striatum differ fundamentally in terms of their
sensitivity to distraction. Whereas MTL-dependent declarative
learning of the cue–outcome associations was disrupted by perfor-
mance of the secondary task, the striatal-dependent habit learning
was not diminished and, in fact, was more closely linked to
performance than under ST conditions. The second critical differ-
ence between these systems is the degree to which they support
flexible use of knowledge. Studies of amnesic patients with damage
to the MTL have shown that such patients can, under some
conditions, learn information that usually depends on the integrity
of the MTL (27, 28). However, this learning requires extensive
training; more critically, the resulting representations lack flexibility
and are more characteristic of habit learning. Our results support
the idea that the MTL-dependent memories are readily accessed in
situations that differ from the training context (1, 2), as in the
cue-knowledge tests given in this experiment. In contrast, knowl-
edge acquired by the striatal-dependent habit-learning system
appears to be encapsulated in the stimulus–response mappings
acquired during learning. In sum, the present results show how the
presence of distraction can change the way that a task is learned
such that later expression of knowledge can rely on different brain
systems.

Methods
Participants. Fourteen adults, recruited from the University of
California Los Angeles (UCLA) community, were paid for partic-
ipation in this study (mean age 25.71 yr, SD � 6.53; 5 males).
Participation was limited to those between 18 and 45 yr of age,
right-handed, with no reported history of neurological illness or
drug abuse. All participants provided informed consent in accor-
dance with procedures approved by the UCLA Office for the
Protection of Human Research Subjects.

Behavioral Procedure. Participants were told that they would learn
to predict the weather (sun or rain) in two different cities based on
sets of cues, which were colored shapes. Four pink cues were used
to predict weather for one city and four green cues to predict
weather for the other city. Between one and three cues could
appear on each trial, yielding 14 combinations. The relative screen
locations of specific cues were randomized across trials. The cue

strength of each of the 14 resulting stimuli were such that the overall
probability associating each cue with sun or rain was 0.756, 0.575,
0.425, and 0.244 across 100 trials (see Table 5, which is published
as supporting information on the PNAS web site). These proba-
bilities were the same as those used in several previous studies using
the PCT (3, 12). A response was counted as correct if it matched the
outcome most strongly associated with a stimulus (i.e., a maximizing
criterion). Because the feedback was probabilistic, a participant
could make an optimal prediction (which was counted as correct)
yet receive feedback inconsistent with that prediction.

One hundred trials of learning on the weather-prediction task,
divided into two runs, were completed for each city, resulting in four
training runs. During all four training blocks, participants heard
high- (1,000 Hz) and low- (500 Hz) pitched tones through head-
phones but were required to keep a running count of only the
high-pitched tones during weather prediction in one set of blocks,
the DT blocks. Assignment of cues to ST or DT conditions and the
order of ST and DT blocks were counterbalanced across subjects.
ST and DT training was always interleaved, such that participants
performed either ST1-DT1-ST2-DT2 or DT1-ST1-DT2-ST2 (see
Fig. 1). Cues were displayed for 3 s, during which participants
responded. Thereafter, the outcome was displayed above the cues
for 1 s. The intertrial interval was 0.5 s. After each five trials,
participants were asked how many high tones they had counted and
had 2 s to respond by choosing between two numbers shown on the
screen (the target number and a foil, which was the target � 1). On
ST blocks, participants were instead asked to select the higher of
two numbers. After the tone (or number) question, three baseline
trials occurred. Each baseline trial displayed three identical symbols
unrelated to the cues for predicting the weather, and participants
were required to press with their index finger on each trial. Each run
consisted of 10 cycles of task and baseline trials and lasted 416 s.

After learning to predict the weather in two cities, an ER probe
run was completed, during which no tones were heard. Trials with
pink cues and those with green cues were randomly intermixed, and
no feedback was given. The probe run presented the 14 cue
combinations used in each task four times for a total of 112 trials
(56 in each condition). Thus, performance on this task was a
measure of the weather prediction proficiency achieved during the
previous training. Each trial lasted 2.5 s. The ITI varied between 0.5
and 5 s (mean � 1.75 s) and was sampled randomly from a
truncated exponential distribution. The ITI was optimized for
efficiency of the comparison between trials with stimuli learned
under ST vs. DT conditions by using custom software in MATLAB
(Mathworks, Natick, MA). The run lasted 477.75 s.

Outside the scanner, subjects completed a test of their declarative
knowledge of cue–outcome associations (as in ref. 19). First,
subjects were asked to estimate the probability associated with all
cue combinations they had seen. In this test, participants were
shown each of the 14 cue combinations for each cue set and asked
how likely (in terms of percent) it would be for the outcome to
become sun if this cue combination was present. The other half of
subjects gave their responses in terms of the ‘‘rain’’ outcome.
Second, subjects were asked to select, from a lineup, the cues most
likely to be present given a specific outcome. Subjects were pre-
sented with all single cues and asked to pick the cue most associated
with either sun or rain. This procedure was repeated for the two cue
combinations and the three cue combinations. The entire test was
performed a second time, with subjects asked to select the cue or
combination of cues most likely to occur when the other outcome
(sun or rain) was present. This test is presumed to reflect more
flexible and abstract knowledge (characteristic of MTL-dependent
learning) (19) and may thus be more sensitive to interference with
MTL function. The absolute difference between cue estimates and
actual values and the cue-selection scores were transformed to z
scores and averaged. One participant’s cue-selection score was lost
because of computer error, and only the cue-estimate score figured
in that participant’s knowledge score. This composite score repre-
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sented a general measure of each participant’s flexible knowledge
of cue–outcome associations and was used as a covariate in
regression analyses.

MRI Acquisition. Imaging was performed with a 3T Siemens Allegra
head-only MR scanner. Before functional scanning, the following
structural images were acquired: a high-resolution T1-weighted
magnetization-prepared rapid gradient echo (MP-RAGE) [repe-
tition time (TR) � 2,300 ms; inversion time 1,100 ms; echo time
(TE) � 2.93 ms; 256-mm field of view (FOV); 192 � 192 matrix;
1.33 mm � 1.33 mm pixel size; slice thickness, 1 mm] and a
high-resolution T2-weighted anatomical image coplanar to the
functional acquisition (TR � 5 s; TE � 33 ms; 128 � 128 matrix;
1.56 mm � 1.56 mm pixel size; 30 slices; 4-mm slice thickness plus
1-mm gap; 200 mm FOV). Blood oxygenation level-dependent-
sensitive functional images were collected by using a gradient-echo
echo-planar pulse sequence (TR � 2,000 ms; TE � 30 ms; 64 � 64
matrix; 3.125 mm � 3.125 mm pixel size; 30 slices; 4-mm slice
thickness plus 1-mm gap; 200 mm FOV). Four images at the
beginning of each run were discarded to allow T1 equilibration.

Data Processing and Analysis. Preprocessing and statistical analysis
of the data were performed by using the program FSL [Oxford
Centre for Functional Magnetic Resonance Imaging of the Brain
(FMRIB), Oxford University, Oxford, U.K.] (29). Motion correc-
tion was performed by using MCFLIRT (30). Each fMRI run was
subjected to independent components analysis by using the FSL
MELODIC tool (31). This tool provides a report displaying the
spatial and temporal characteristics for each of the isolated com-
ponents; these reports were examined, and components clearly
related to motion or other sources of low- or high-frequency noise
were removed to create a denoised data set.† (All basic analyses
were performed on denoised as well as ‘‘noisy’’ data sets, and the
results did not differ qualitatively.) Images were temporally high-
pass filtered with a cutoff period of 80 s for the tone-counting run,
75 s for PCT training runs, and 66 s for the final ER run. Spatial
smoothing was applied with a Gaussian kernel of 5 mm (FWHM).
After preprocessing, statistical analyses were performed at the
single-subject level by using the general linear model within FSL
(FEAT, FMRI Expert Analysis Tool). Each event was modeled as
an impulse convolved with a canonical hemodynamic response
function (HRF) (a double �-function modeling the HRF rise and

following undershoot) along with its temporal derivative. For the
ER probe run, trials with correct responses for each task were
modeled separately. Specific comparisons of interest were tested by
using linear contrasts. After analysis at the individual level, the
results were spatially normalized to the Montreal Neurological
Institute (MNI)-152 template by using FSL’s FLIRT registration
tool. Functional images were first aligned to the coplanar high-
resolution T2-weighted image, and then the coplanar was aligned to
T1-weighted MP-RAGE and, finally, the MP-RAGE to the stan-
dard MNI-152 image. All transformations were carried out by using
12 degrees of freedom affine transforms (30). Mixed-effects group
analyses were performed for each contrast by using FSL’s FLAME
(FMRIB’s local analysis of mixed effects) module (29). Higher-
level statistical maps were thresholded by using clusters determined
by Z � 2.3 and a (corrected) cluster significance threshold of P �
0.05, according to the theory of Gaussian random fields (32).

For a priori anatomical regions, additional analyses used ran-
domization tests across voxels limited to the region of interest
(ROI) by using the FSL randomize tool; the voxel-based maximum
statistic was used to correct for the volume of interest (33). ROIs
for the MTL were obtained from the automated anatomical
labeling (AAL) library (34), and ROIs for the striatum were
created by manually tracing the caudate and putamen in the
MNI-152 template.

Because of the presence of outliers in the data, robust regression
was performed by using an iteratively reweighted least-squares
algorithm (implemented in the MATLAB Statistics Toolbox); this
method ensures against the influence of outliers on the regression
solution. To directly compare brain activity associated with each
task in regions identified in the regression analyses described above,
we extracted mean activity in a single voxel for each task during the
probe run. The resulting measures of activity during performance
of each task for each subject were then entered in ordinary
least-squares regression using Zellner’s seemingly unrelated regres-
sion analysis (implemented by using Stata 8.0 (Stata College
Station, TX). These analyses compared the difference between the
regions that were differentially associated with performance under
ST and DT conditions (i.e., tested the difference between the
differences in regression lines that resulted from the correlation
between brain activity and performance measures).
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