Pathways for transmission of angiostrongyliasis and associated risks

Robert H. Cowie

Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii

EATING SNAILS AND SLUGS INTENTIONALLY

- Raw snails
- First case in Brasil a dare when drunk
- Recent case in Hawaii also a dare
- Under-cooked or raw snails a delicacy
 - e.g. apple snails (Pomacea, Pila) in Thailand

Pomacea canaliculata

INFECTION FROM DEBRIS ASSOCIATED WITH PREPARING SNAILS FOR COOKING

 Thought to be an important pathway for infection in Taiwan – introduced apple snails (Yen et al. 1990)

Brasil near Belém 2004

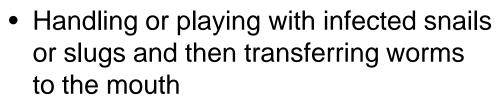
EATING SNAILS AND SLUGS UNINTENTIONALLY

- In salad and other vegetables eaten uncooked
- Small species or juveniles of larger species may not be seen
- Wash produce carefully to remove slugs and snails
- Grant proposal currently under review
 - project will screen a range of solutions for washing produce to make snails/slugs drop off

EATING PRODUCE CONTAMINATED WITH SLIME FROM SNAILS AND SLUGS

- Slime probably less important than snails and slugs themselves
 - no evidence of anyone becoming infected via this route
 - numbers of worms is low compared to numbers in the snails/slugs themselves

Ash 1976 Campbell & Little 1988 Chen et al. 2005



HANDLING INFECTED SNAILS AND SLUGS

- mostly children

- school projects

Wan & Weng 2004 Graeff-Teixeira et al. 2009

GOING FOR THE WORLD RECORD FOR NUMBER OF SNAILS ON YOUR FACE

Fin Keleher, Utah, USA
43
The current world record!

Tania Walton, Cheshire, UK

25

Former world record

DRINKING CONTAMINATED WATER

- Snails/slugs crawl into rain-fed water tanks
 - Theoretically possible but no records of human infection by this pathway
 - Dilution in a large quantity of water reduces the number of infective worms likely to be ingested

Cheng & Alicata 1964 Wallace & Rosen 1969 Ubelaker et al. 1980

EATING PARATENIC HOSTS

- Intentionally eating raw/under-cooked freshwater shrimp
 - e.g. Tahiti and other Pacific islands
- Intentionally eating raw/under-cooked land crabs, coconut crabs, freshwater prawns
 - e.g. Micronesia
- Intentionally eating raw/under-cooked freshwater fish
- Intentionally eating raw/under-cooked frogs
- Accidentally eating terrestrial flatworms that feed on snails/slugs (*Platydemus manokwari*, *Geoplana forsterorum*), either whole or part
 - e.g. Okinawa, New Caledonia

Coconut crab - Birgus latro

Platydemus manokwari

Alicata 1964 Alicata & Jindrack 1970 Ash 1976 Asato et al. 2004

RAT LUNG WORM DISEASE SCIENTIFIC WORKSHOP HONOLULU, HAWAII AUGUST 16 - 18, 2011

INTERMEDIATE AND PARATENIC HOSTS IN HAWAII

- 13 out of 16 species of snails/slugs that were tested were identified as intermediate hosts, representing a broad diversity of Gastropoda
- But no potential paratenic hosts have been screened
 - freshwater prawns, flatworms (possibly on produce), etc.

RAT LUNG WORM DISEASE SCIENTIFIC WORKSHOP HONOLULU, HAWAII AUGUST 16 - 18, 2011

INFECTION THROUGH OPEN WOUNDS

- Infection from contact with snails/slugs, slime, contaminated water, paratenic hosts
 - Theoretically possible but no records of human infection by this pathway

Angus 2005

SEVERITY OF THE DISEASE DEPENDS ON DOSAGE

Well maybe, given what we heard yesterday...

The number of infective third-stage *Angiostrongylus cantonensis* necessary to cause disease in humans is not known

- Mice fed 20-30 3rd stage worms no effects
- Mice fed 70-100 3rd stage worms serious neurological effects and death
- Pigs infected with 20,000 worms only 1 in 5 showed cerebral pathology
- Calves infected with 70,000 worms all showed cerebral pathology but only 1 showed clinical symptoms
- A dog infected with 2,000 worms paralysis of hind legs
- A monkey infected with several hundred worms eosinophilic meningitis

Mackerras & Sandar 1955 Alicata and Jindrak 1970 Prociv et al. 2000 Reviewed by Hollingsworth & Cowie 2006

RELATIVE RISKS

- Severity of the disease depends on dosage therefore:
- Intentionally eating a raw, heavily infected slug or snail or paratenic host – poses great risk
 - Partial cooking will reduce but not necessarily eliminate the risk
 - Thorough cooking will eliminate the risk
- Accidentally eating a raw, heavily infected slug or snail, perhaps on vegetables/produce, also poses great risk
- Eating vegetables/produce contaminated by slime from infected snails seems to pose a lesser risk
- Drinking contaminated water poses relatively low risk because of dilution
- Infection via open wounds may pose relatively low risk

CONTROL AND MANAGEMENT

- Control vector populations (rats, slugs/snails) to reduce rate of infection in vectors
- Manage intermediate and paratenic hosts to reduce likelihood of accidental ingestion
- Develop methods to clean vegetables/ produce of intermediate and paratenic hosts
- Educate the public so that people do not deliberately eat raw intermediate and paratenic hosts and take care to clean vegetables/produce so as not to eat them accidentally

SOME KEY PUBLICATIONS

- Alicata, J.E. 1964. Notes and observations on murine angiostrongylosis and eosinophilic meningoencephalitis in Micronesia. *Canadian Journal of Zoology* 43: 667-672.
- Alicata, J.E. 1964. *Parasitic infections of man and animals in Hawaii*. Hawaii Agricultural Experiment Station, College of Tropical Agriculture, University of Hawaii, Honolulu.
- Alicata, J.E. & Jindrak, K. 1970. *Angiostrongylosis in the Pacific and Southeast Asia*. Charles C. Thomas, Springfield, Illinois.
- Asato, R. et al. 2004. Changing epidemiology of angiostrongyliasis cantonensis in Okinawa prefecture, Japan. *Japanese Journal of Infectious Diseases* 57: 184-186.
- Ash, L.R. 1976. Observations on the role of mollusks and planarians in the transmission of *Angiostrongylus cantonensis* infection to man in New Caledonia. *Revista de Biologia Tropical* 24: 163-174.
- Bonetti, V.C.D.B. de O. & Graeff-Teixeira, C. 1998. *Angiostrongylus costaricensis* and the intermediate hosts: observations on elimination of L3 in the mucus and inoculation of L1 through the tegument of mollusks. *Revista da Sociedade Brasileira de Medicina Tropical* 31: 289-294.
- Campbell, B.G. & Little, M.D. 1988. The finding of *Angiostrongylus cantonensis* in rats in *New* Orleans. *American Journal of Tropical Medicine and Hygiene* 38: 568-573.
- Chen, X.-G. et al. 2005. Angiostrongyliasis, mainland China. *Emerging Infectious Diseases* 11: 1645-1647.
- Cheng, T.C. & Alicata, J.E. 1964. Possible role of water in the transmission of *Angiostrongylus cantonensis* (Nematoda: Metastrongylidae). *Journal of Parasitology* 50 Section 2: 39-40.
- Hollingsworth, R.G. & Cowie, R.H. 2006. Apple snails as disease vectors. In: *Global advances in ecology and management of golden apple snails* (ed. R.C. Joshi & L.C. Sebastian), p. 121-132. Philippine Rice Research Institute, Muñoz, Nueva Ecija.
- Prociv, P. et al. 2000. Neuro-angiostrongyliasis: Unresolved issues. *International Journal for Parasitology* 30: 1295-1303.
- Wallace, G.D. & Rosen, L. 1969. Studies on eosinophilic meningitis V. Molluscan hosts of *Angiostrongylus cantonensis* on Pacific Islands. *American Journal of Tropical Medicine and* Hygiene 18: 206-216.
- Yen, C.-M. et al. 1990. A survey of *Ampullarium canaliculatus* [sic] for natural infection of *Angiostrongylus cantonensis* in south Taiwan. *Journal of Tropical Medicine and Hygiene* 93: 347-350.

