3D Printer Safety

- **What is 3D printing?**
 - Also known as additive manufacturing, 3D printing is a method of making items from digital drawings.
 - There are different types of 3D printing methods and materials.
 - Fused Deposition Modeling (FDM) [Most common]
 - Stereolithography (SLA)
 - Digital Light Processing (DLP)
 - Materials can include plastics, metal, ceramic, carbon fiber, and even biological cells in a powder, filament, or liquid form.
 - Important note: 3D printing is a developing technology with hazards still being studied.

- **Potential Hazards**
 - Ultrafine/Nano-sized particles
 - Volatile Organic Compounds
 - Chemical vapors
 - Electrical shock
 - Ultraviolet radiation
 - Lasers
 - Flammable and/or reactive powders
 - Fire
 - Burns
 - Heat
 - Chemical (if corrosive bath used)
 - Pinch points
 - Biological hazards
 - Sharp edges

- **Potential Controls**
 - Engineering
 - Ventilation, Area and Local Protection
 - Thermal Runaway Protection
 - HEPA filtration systems
 - Enclosures
 - Fire protection systems
 - Administrative
 - Standard Operating Procedures
 - Location control
 - Training
 - PPE
 - Nitrile gloves
 - Respirators
 - Safety Glasses

Last updated November 17, 2020
• **Best Practices**
 o Before getting a 3D printer
 - Determine best location using manufacturer and UH Facilities requirements.
 - Check printer certifications (i.e. ANSI/CAN/UL 2904)
 - Order high quality feedstock materials (i.e. manufacturer approved).
 - Source 3D printers from reputable manufacturers.
 o Before using a 3D printer
 - Read and understand the manual.
 - Install according to manufacturer instructions and specifications.
 - Assess the hazards of your particular 3D printer.
 - Read SDS of feedstock materials.
 o While using a 3D printer
 - Once a printing job has been started, do not fix things while the printer is moving.
 - Ensure first layers are adhered properly.
 - Do not leave the printer unattended, keep checking on its progress.
 - Keep ventilation/filtration systems active during printing.
 o After using a 3D printer
 - Ensure 3D printer power is off.
 - Clean up unused materials in and around the printer.
 - Wash hands after handling materials.
 - Dispose of materials properly.
 o Post-processing
 - Label rinse tanks with the chemical name and associated hazards.
 - Ensure there is proper ventilation in the area where the bath is located.
 - Ensure there is an eyewash or shower available, if corrosive materials are used.
 - Do not pour any chemical down the drain. All used chemicals must be disposed of as hazardous waste.

• **Questions**
 o If you have any questions or would like a review of your 3D printing processes please contact EHSO at (808)956-8660 or labsafe@hawaii.edu

• **Resources**
 o [NIOSH Additive Manufacturing/3D Printing](#)
 o [NIOSH 3D Printing with Filaments: Health and Safety Questions to Ask](#)
 o [NIOSH 3D Printing with Metal Powders: Health and Safety Questions to Ask](#)
 o [3D Printers & IAQ: Learning Modules](#)
 o [Chemical Insights.org 3d Printer Guidance Documents](#)
 o [ANSI/CAN/UL Standard Method for Testing and Assessing Particle and Chemical Emissions from 3D Printers](#)
 o [RiT 3-D Printer Safety](#)