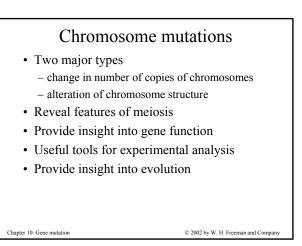
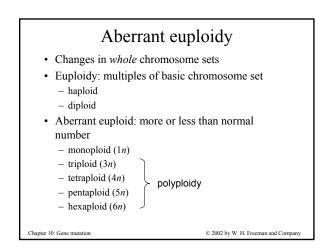
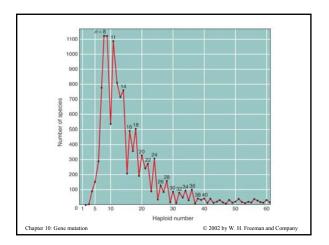
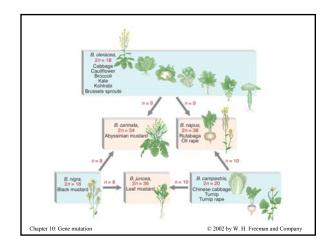

Reminder

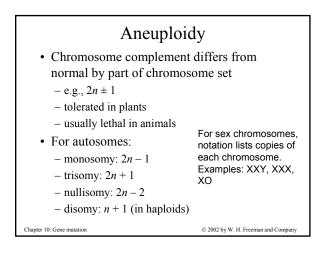

- Critical comment essay due next Tuesday, Dec 7 in class
- See web site for general info about structure and guidelines
- Word limit: 500 (about 2 typed pages), use the counter on your word processing software, usually found in menu under "tools"
- Don't give me a book report, I read the papers and I already know what they say

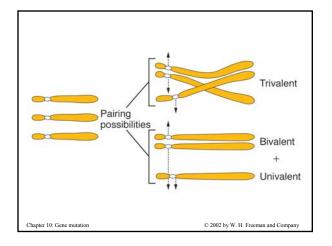
Chapter 10: Gene mutation

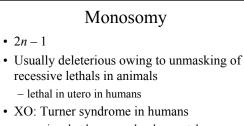

© 2002 by W. H. Freeman and Company

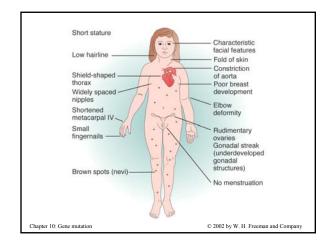

Hospital CHROMOSOME NORMAL CHROMOSOME Duplication Duplication Deletion Deletion Map positions of cDNA clones in chromosomal microarray Chapter 10: Gene mutation

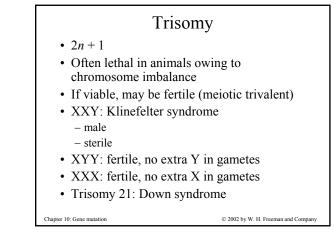


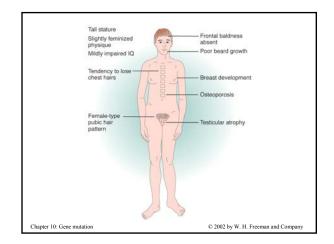

TABLE 11-1	Chromosome Constitutions in a Normally Diploid Organism with Three Chromosomes (Labeled A, B, and C) in the Basic Set		
Name	Designation	Constitution	Number of Chromosomes
Euploids			
Monoploid	n	ABC	3
Diploid	2n	AA BB CC	6
Triploid	3m	AAA BBB CCC	9
Tetraploid	4.9	AAAA BBBB CCCC	12
Aneuploids			
Monosomic	2n - 1	A BB CC	5
		AA B CC	5
		AA BB C	5
Trisomic	2n + 1	AAA BB CC	7
		AA BBB CC	7
		AA BB CCC	7

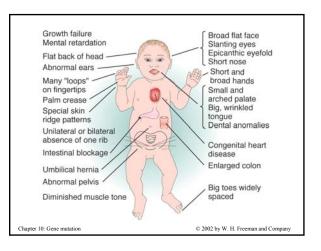




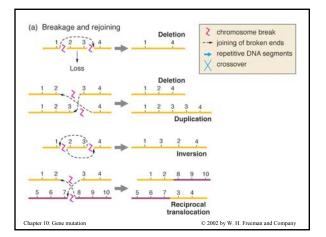


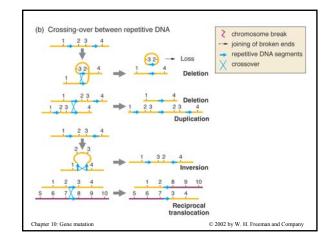



- survives but has some developmental abnormalities
- Used to map genes in plants



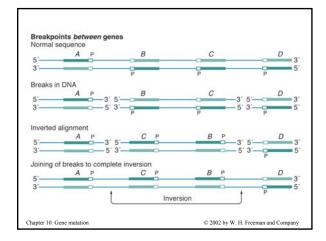
© 2002 by W. H. Freeman and Compan

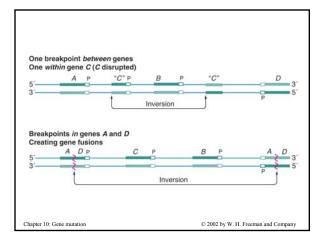


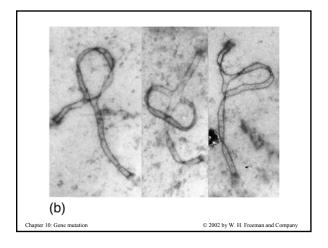


- deletion: loss of segment
- duplication: gain of segment
- inversion: reversal of region
- translocation: movement of segment to another chromosome
- Origin in double-stranded breaks where product has centromere and two telomeres
 - acentric fragments lost at anaphase
 - dicentric fragments dragged to both poles, lost

Chapter 10: Gene mutation

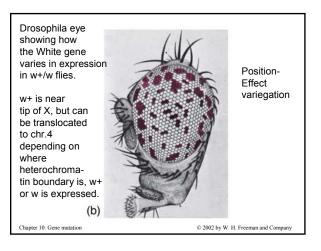

© 2002 by W. H. Freeman and Compan



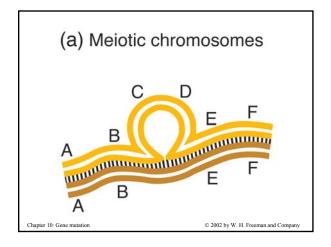


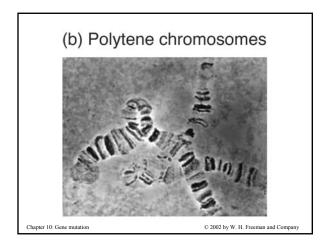
Balanced rearrangement: inversion • Change in gene order, but gain or loss of DNA · Inversion loop formed at meiosis I • Paracentric: centromere outside inversion - crossing-over in inversion heterozygote results in one dicentric chromatid and one acentric fragment - reduced number of viable gametes • Pericentric: inversion spans centromere - crossing over in inversion results in gene imbalance - reduced number of viable gametes Chapter 10: Gene mutation © 2002 by W. H. Freeman and Company

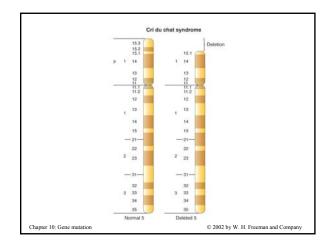



Balanced rearrangement: translocation

- Change in gene order, but no gain or loss of DNA
- Reciprocal translocations: exchange between two nonhomologous chromosomes
- · Cross-shaped configuration at meiosis I
- Crossing-over results in gene imbalance, semisterility


© 2002 by W. H. Freeman and Company


Chapter 10: Gene mutation



Imbalanced rearrangement: deletion Loss of segment of DNA Intragenic deletion: small deletion within gene Multigene deletion many genes deleted often severe consequences gene imbalance expression of deleterious recessive mutation (pseudodominance) Visible as deletion loop May be used in deletion mapping

Deletions: plants vs animals

- Chromosomal deletion mutations often affect survival differently in plants, compared to animals (i.e. animal sperm)
- Plant sensitivity may be linked to metabolic demands on pollen in reproduction
- Pollen cells must germinate and form proteins to make pollen tube in order to fertilize the ovule
- Genetic abnormalities in pollen cells therefore have greater functional consequences than those in sperm

Chapter 10: Gene mutation

© 2002 by W. H. Freeman and Company

Imbalanced rearrangement: duplication

- · Gain of segment of DNA
- Source of new genes and gene families
- Tandem duplication: adjacent duplications
- Insertional duplication: duplicate gene inserted elsewhere in genome
- May be consequence of unequal crossingover

Chapter 10: Gene mutation

© 2002 by W. H. Freeman and Company