"Mixed Reviews": An Introduction to Proc Mixed

ANNMARIA DE MARS, PH.D. The Julia Group Santa Monica, ca

Obligatory naked mole rat slide

- How to do PROC MIXED, syntax using SAS 9.2 and SAS Enterprise Guide,
- Interpretation of PROC MIXED results,
- Differences between PROC MIXED and PROC GLM,
- Common error messages

Statisticians – feel free to check your text messages

"I see a significant R-squared, can I leave now?"

It's not as hard as it looks

Proc mixed, that is

In a nutshell

- For the vast majority of practical cases, PROC MIXED and PROC GLM will give you the same results
- If you aren't familiar with PROC GLM, the previous statement was of no help whatsoever

Baby Steps

GLM = General Linear Model

• Regression

• Analysis of Variance

PROC MIXED and PROC GLM both

Are used to predict the values of a numeric dependent variable Assume the dependent variable is normally distributed

PROC GLM <u>may be</u> identical to PROC MIXED

MIXED MODELS include

- A mix of FIXED effects and RANDOM effects
- Seriously, this is key to understanding the whole thing

"The fixed-effects parameters are associated with known explanatory variables, as in the standard linear model.

These variables can be either qualitative (as in the traditional analysis of variance) or quantitative (as in standard linear regression)."

SAS 9.2 SAS/STAT Users Guide

Fixed effect

Not a random sample of genders

Random effects - schools

Well, either type of school, really

Why age is not a random effect

It's all about the (error)variance

Predicting height of a new species

- Family is a random effect
- Age is not

Why PROC MIXED may not matter

It may be that there is not much covariance within schools, sites, etc.

How Mixed Models differ

 $Y = \beta 1 * FAM_INC + \beta 2 * SCHOOL + \beta 3 * IQ + e$

IID* and homoscedasticity

* Independent, identically distributed

GLM assumes errors are uncorrelated, homoscedastic and normally distributed

In PROC MIXED, errors are not assumed to be uncorrelated

That's IT ?!

You went through this whole thing to say that in PROC GLM errors are assumed to be uncorrelated and in PROC MIXED they're not?

How Mixed Models differ

 $Y = \beta 1 * FAM_INC + \beta 2 * IQ + YZ1 + e$

But in this case e is no longer assumed to be independent

Also, there can be (and usually are) a bunch of gamma effects

One last try ...

• In the general model PROC GLM we are trying to fit means

In the mixed model...

• In addition to means, we are trying to fit covariances. We don't have to worry about that with the general linear model because we have assumed that all the observations are independent and thus there is no covariance.

One last statistical point

Yes, it is really the last one

Crossed versus nested factors

Often, in PROC MIXED you'll need to specify if your data are nested

Crossed factors: Each level of each factor appears in every other level

Marital status and employment

Nested factors

Subjects are usually NESTED within group.

A subject will be either an experimental group or a control group.

An example and syntax at last!

We want to test for differences between control and experimental groups.

We'd like to take into account our repeated measures, so when we compare our groups later we can say that any differences are due to our wonderful training.

Syntax

```
PROC MIXED DATA = mixed ;
CLASS group name pre_post ;
MODEL score = group pre_post group*pre_post ;
REPEATED pre_post / SUBJECT = name(group)TYPE = cs
;
LSMEANS group group*pre_post / adjust = tukey ;
```

That's IT ?

Yes.

Now, for each statement ...

PROC MIXED DATA = mixed ;

Okay, that's pretty self-evident

CLASS group name pre_post;

Identify your categorical variables in the class statement.

This INCLUDES your subject identifier

MODEL score = group pre_post group*pre_post;

Model dependent = FIXED EFFECTS ;

REPEATED pre_post / SUBJECT = name(group) TYPE = cs ;

Specify the variable that is repeated Specify the variable that identifies the subject AND IF IT IS NESTED Subject-identifier (variable it is nested within) You don't have to specify a covariance structure type

LSMEANS group group*pre_post / adjust = tukey ;

LSMEANS requests the means for the variables and subgroups specified / adjust = requests test of differences between

means

Output!

Model Information				
Data Set	WORK.MIXED			
Dependent Variable	zscore			
Covariance Structure	Compound Symmetry			
Subject Effect	Name(Group)			
Estimation Method	REML			
Residual Variance Method	Profile			
Fixed Effects SE Method	Model-Based			
Degrees of Freedom Method Between-Within				

There were no random effects

Dimensions				
Covariance Parameters	2			
Columns in X	9			
Columns in Z	0			
Subjects	171			
Max Obs Per Subject	4			

In <u>this example</u> should be 2 * # of subjects

Number of Observations				
Number of Observations Read	342			
Number of Observations Used	342			
Number of Observations Not Used	0			

Iteration History						
Iteration	Evaluations	-2 Res Log Like	Criterion			
0	1	2798.56848725				
1	2	2709.06943103	0.00000079			
2	1	2709.06860756	0.00000000			

Convergence criteria met

Covariance Parameter Estimates						
Cov Parm	Subject	Estimate				
CS	Name(Group)	134.04				
Residual		75.3247				

Here is the estimate for the covariance due to Name (within subjects), the type of covariance matrix is compound symmetry.

Akakike Information Criterion

Fit statistics are used to compare models. If I re-ran the model without one of the variables, I could see if the resulting model was better or worse.

Fit Statistics					
-2 Res Log Likelihood	2709.1				
AIC (smaller is better)	2713.1				
AICC (smaller is better)	2713.1				
BIC (smaller is better)	2719.4				

Is your model

Null Model Likelihood Ratio Test					
DF	Chi-Square	Pr > ChiSq			
1	89.50	<.0001			

Type 3 test of FIXED EFFECTS

Type 3 Tests of Fixed Effects						
Effect	Num DF	Den DF	F Value	Pr > F		
Group	1	169	3.17	0.0770		
Pre_Post	1	169	49.86	<.0001		
Group*Pre_Post	1	169	18.71	<.0001		

What hypothesis is being tested?

Least Squares Means							
Effect	Group	Pre/Post	Estimate	Standard Error	DF	t Value	Pr > t
Group	CONTROL		101.06	1.3890	169	72.76	<.0001
Group	EXP		104.62	1.4460	169	72.35	<.0001
Group*Pre_Post	CONTROL	Post	102.34	1.5338	169	66.72	<.0001
Group*Pre_Post	CONTROL	Pre	99.7753	1.5338	169	65.05	<.0001
Group*Pre_Post	EXP	Post	109.95	1.5952	169	68.93	<.0001
Group*Pre_Post	EXP	Pre	99.2919	1.5952	169	62.24	<.0001

THIS IS REALLY IMPORTANT !!!

Test of Mean Differences

Differences of Least Squares Means							
Effect	Group	Pre/Post	Group	Pre/Post	Adj P		
Group	CONTROL		EXP		0.0770		
Group*Pre_Post	CONTROL	Post	CONTROL	Pre	0.2039		
Group*Pre_Post	CONTROL	Post	EXP	Post	0.0040		
Group*Pre_Post	CONTROL	Post	EXP	Pre	0.5161		
Group*Pre_Post	CONTROL	Pre	EXP	Post	<.0001		
Group*Pre_Post	CONTROL	Pre	EXP	Pre	0.9963		
Group*Pre_Post	EXP	Post	EXP	Pre	<.0001		

Compared to PROC GLM

NOTE: Dataset is structured differently PROC MIXED multiple observations per subject PROC GLM one observation per subject, with multiple fields for test score

MIXED

Type 3 Tests of Fixed Effects						
Effect	Num DF	Den DF	F Value	Pr > F		
Group	1	169	3.17	0.0770		
Pre_Post	1	169	49.86	<.0001		
Group*Pre_Post	1	169	18.71	<.0001		

GLM

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Group	1	1098.62572	1098.62572	3.21	0.0748
Error	169	58116.52254	341.86190		

Source	DF	Type III SS	Mean Square	F Value	Pr > F
prepost	1	3755.47423	3755.47423	49.74	<.0001
prepost*Group	1	1409.19516	1409.19516	18.66	<.0001
Error(prepost)	169	12835.23216	75.50137		

The less than exciting point

It is not a very huge difference whether you use PROC GLM or PROC MIXED

How about RANDOM effects ?

Maybe that will be better?

Curriculum tested at three sites with pretest and posttest

RANDOM effect = school REPEATED = trial

At last! More syntax!

proc mixed data = mixedR ratio; class site trial case ; model score = trial ; Random site / subject = case(site); Repeated trial ; lsmeans trial / adjust = tukey ;

NOTE

Model score = trial ;

Only fixed effects on model statement

Site is a random effect

Random site / subject = case(site); Repeated trial ;

We are happy

Covariance Parameter Estimates					
Cov Parm	Subject	Ratio	Estimate		
type	Name(type)	2.0383	78.4081		
Trial		1.0000	38.4679		

Type 3 Tests of Fixed Effects					
	Num	Den			
Effect	DF	DF	F Value	Pr > F	
Trial	1	201	52.12	<.0001	

	Differences of Least Squares Means								
				Standard					
Effect	Trial	_Trial	Estimate	Error	DF	t Value	Pr > t	Adjustment	Adj P
Trial	1	2	-4.4554	0.6171	201	-7.22	<.0001	Tukey-Kramer	<.0001

Seriously, what difference does it make?

- Sometimes you can use RANDOM or REPEATED
- Sometimes RANDOM doesn't matter

Random & Repeated

Are not the same – except when they are.

Certain overspecified models ..." can be specified by using a **random** or **repeated** statement alone. Unfortunately, one such model is the commonly encountered repeated measures with compound symmetry. "

http://www.jerrydallal.com/LHSP/mixedq.htm

Random may not matter

Conceptually, you have a random effect if it is sampled from the population of individuals, machines, schools, etc.

Statistically, a random effects explains some of the covariance. If there is not any difference among the families/ schools / sites in your sample, the RANDOM statement won't matter.

Repeated Measures ANOVA using Proc Mixed

With no programming

Pre- Post Test Experiment

- A typical experimental design subjects were either an experimental group or control group.
- Both groups were given a pre-test and a post-test.
- You want to test for significance of interaction between group and test. Your hypothesis is that such an interaction exists and the experimental group improved more.

What to do & how to do it

- You could do a mixed model ANOVA
- It is called mixed because it has two types of effects, fixed and random
- Your data should be in the format of one record for EACH measurement for each person, i.e., multiple records per person.

Select MIXED MODELS task

e - mixedproject.egp

Tasks	Program	Tools	Help	🖆 • 🚰 • 🐔 📇 🤟 🖻 🛍 🗙
Da	ata	•	ess Fl	DW -
De	escribe	•	lun 🗸	■ Stop Export - Schedule - Zoom -
Gi	aph	•		MIXED Mixed
A	AVOVA	•	Ы	t Test
Re	gression	•	<i>й</i> ч	One-Way ANOVA
М	ultivariate	•	盃	Nonparametric One-Way ANOVA
Su	ırvival Analysis	•	1	Linear Models
Ca	apability	•	*	Mixed Models

Mixed Model

- 1. Click on Data
- 2. Drag ZSCORE under dependent variable
- 3. Drag NAMEID PRE_POST & GROUP under classification

The selection pane enables you to choose different sets of options for the task.

Mixed Model: Continued

- 1. Select FIXED EFFECTS MODEL
- 2. Select GROUP & PRE_POST and click on the **Main** button
- Select GROUP & PRE_POST <u>at the same</u> <u>time</u> by holding down the shift key and click on the **Cross** button

Data Fixed Effects Model	Fixed Effects Model			
Fixed Effects Model Options Random Effects	Class and quantitative variables	:	Effects:	ļ
Repeated Effects Least Squares Post Hoc Tests	Here and the second sec	Main	Group	
Plots Predictions	Group Pre_Post	Cross	Group*Pre_Post	
Titles		Nest		
Properties		Factorial		
		Degrees: 2		l
		Polynomial		
		Degrees: 2		
	٠	1	4	

Mixed Model: Repeated

- 1. Click on REPEATED EFFECTS
- 2. Click on the ... next to Subject Identifier
- 3. Select NAMEID as the Subject Identifier.

Mixed Models for Local:SASU	JSER.	RESEARCHCLASS2		
Data	Rep	peated Effects		
Fixed Effects Model				
Fixed Effects Model Options				
Random Effects	Re	epeated Effects Options		
Repeated Effects	_	· · ·		_
Least Squares Post Hoc Tests	Ξ	Effects to use		
Plots Predictions Titles Properties		Within-subjects effect	<none></none>	
		Model subjects		
		Subject identifier	namelD	
	Ξ	Covariance structure		Ĩ
		Covariance structure	Variance components	
	Ξ	Group effect		
		Group identifier		
		D matrix antions		

Mixed Model: Repeated

- 1. Click on Name, the NEST button will no longer be grayed out
- 2. Click on Group
- 3. Click NEST

Effects Builder - Subj	ect identifier
Classification variables:	Subject identifier: Main Cross Remove effect Nest
	OK Cancel Help

Mistakes not to make

- Even though it makes perfect sense to think of the subject identifier as a random effect (which it is) do NOT identify it as a random effect. The random effect is for random effects that are not repeated. In this example, there were no such random effects.
- 2. Know the difference between crossed & nested effects. Here we have both crossed and nested effects

http://support.sas.com/learn/statlibrary/statlib_eg4.2/eg_anova_4.htm

My point !

Sorry, but ...

- Whether you use REPEATED vs RANDOM, the type of covariance, whether you use PROC GLM vs PROC MIXED.
 None of it matters a great deal unless your model is borderline.
- What does matter is if your model is completely WRONG, that is if you leave out the repeated effects, don't realize that subjects are nested within schools

So, Chris Rock was wrong. You <u>need</u> to know why*

