A. Hope Jahren

A. Hope Jahren

University of Hawaiʻi at Mānoa’s A. Hope Jahren and University of Louisiana at Lafayette’s Brian Schubert have now determined how to resolve a difference in carbon cycling activity.

Up until this point, researchers have puzzled over a key inconsistency in carbon records. The geologic markers for historic disruptions in carbon cycling activity—recorded as carbon isotope excursions or CIE—tend to be much larger in terrestrial rocks than those recorded in marine rocks during the same time periods.

“Our new model reconciles the differences based on the fundamentally different nature of carbon cycling on land compared to the ocean, injecting a more sophisticated view of ecology into current paleoclimatology,” said Jahren, a professor of geology and geophysics at the University of Hawaiʻi at Mānoa.

Jahren and Schubert developed their model based on research conducted while Schubert was a postdoctoral fellow at University of Hawaiʻi at Mānoa. Their work is published in an April 3 article in Nature Communications.


University of Hawaii at Manoa greenhouse observations using modern plants helps explain key differences in geologic record. (photo courtesy of UH Manoa’s department of geology and geophysics )

Using UH Mānoa greenhouse space to simulate a variety of controlled climate scenarios, Schubert and Jahren identified a unifying relationship for the effect of atmospheric CO2 on plant tissues in a wide range of carbon-fixing land plants.

Their new model offers scientists a way to use terrestrial and marine records together to reconstruct the background and maximum atmospheric CO2 levels across carbon isotope excursions. The new model also provides insight into some future climate scenarios.

Read the UH Mānoa news release for more about this discovery.

This Post Has One Comment
  1. There appear to be professionally disturbing claims made in other releases including UH Mānoa’s own news release, that for example quote Schubert as saying that the total atmospheric carbon-dioxide (level) during their examined 55 Ma era was substantially less than current estimates for our time–whereas previously established scientific estimates have been that we have yet a few hundred years to reach the concentrations of 50 Ma–which can possibly mean that the 55 Ma concentrations were low but climbing so rapidly that ours will be ultimately lower. It would help to have the principals clarify their news release.

Leave a Reply

Your email address will not be published. Required fields are marked *