UH Mānoa General Education

Foundations Course Designation Proposal: Quantitative Reasoning

UH Mānoa departments are invited to complete this proposal form for any 100- or 200-level course that meets the Foundations Quantitative Reasoning (FQ) Hallmarks. Quantitative Reasoning (FQ) will replace Symbolic Reasoning as a UHM requirement for students entering the UH System in Fall 2018 and beyond. Please note FQ will not appear as an official designation on any course until Fall 2018.

Departments should contact the General Education Office prior to working on an FQ proposal so that consultation can be arranged with the Foundations Board. Departments are also encouraged to submit proposals prior to the listed deadline to aid in the negotiation process that is sometimes necessary to secure approval for the desired start term.

Proposal forms – including all applicable supporting documentation – may be submitted to the General Education Office in the following ways:

1. Hard copies delivered in-person or via campus mail to Bilger 104
2. Electronic copies emailed to gened@hawaii.edu

Deadline: February 17, 2017 for Fall 2018 effective term

REQUIRED INFORMATION

1. Course information. Subject __________ Course number __________
 (e.g., "ANTH")
 If the course is cross listed, provide the cross-listing: Subject ______ Course # ______
 Course title: __

2. Course description. Submit a copy of the official course description. The course description must be consistent with the Hallmarks listed in item 4.

3. Course syllabus. Submit the master syllabus that will be used as the course framework. If multiple instructors teach the course and use varying texts and/or assignments or will offer the course in an online format, include all representative syllabi.

4. Application of Hallmarks. Provide a considered response to each of the questions that appear in bold.
 Please see pages 3-4 or visit http://manoa.hawaii.edu/quantitativereasoning/definition-hallmarks/ for the full listing of Hallmarks.

QUANTITATIVE REASONING (FQ): To satisfy the FQ requirement, a course will

a. provide students with theoretical justifications for, and limitations of, mathematical or statistical methods, and the formulas, tools, or approaches used in the course.
 i. What mathematical or statistical methods, formulas, tools, and/or approaches will be explored in the course?

b. include application of abstract or theoretical ideas and information to the solution of practical quantitative reasoning problems arising in pure and applied research in specific disciplines, professional settings, and/or daily and civic life.
 i. Where in the course will the instructor integrate real-world problems and practical application?

 ii. Provide sample activities, assignments/projects, and/or test questions that demonstrate the integration of real-world problems and practical application into the course.
c. provide opportunities for practice and feedback that are designed to help students evaluate and improve quantitative reasoning skills by including a course component at least once per week with a maximum 30:1 student-to-teacher ratio.

i. What kind of feedback will students receive from the instructor, peer tutors, teaching assistants, and/or graduate assistants on a weekly basis?

ii. If peer tutors, teaching assistants or graduate assistants will be utilized, what kinds of support or training will the department provide them so they can effectively support student learning of quantitative reasoning skills?

iii. Describe the kinds of activities, assignments, and/or online resources that will be used in the course to facilitate interaction in a 30:1 learning environment.

d. be designed so that students will be able to: 1) identify and convert relevant quantitative information into various forms such as equations, graphs, diagrams, tables, and/or words; 2) select appropriate techniques or formulas, and articulate and evaluate assumptions of the selected approaches; 3) apply mathematical tools and perform calculations (including correct manipulation of formulas); 4) make judgments, create logical arguments, and/or draw appropriate conclusions based on the quantitative analysis of data, the assumptions made, the limitations of the analysis, and/or the reasonableness of results; and 5) effectively communicate those results in a variety of appropriate formats.

i. Where in the course will students demonstrate the five quantitative reasoning skills listed in this Hallmark? To address this question, please provide sample assignments and model solutions/products that reflect all five skills.

5. Assessment. Include a summary of the assessment plan that includes the following:
 a) What will you use to measure how successful the course is in meeting the FQ Hallmarks and learning objectives (ex. evaluation tools, learning artifacts, etc.)?
 b) How do you plan to utilize the data collected to improve the course?

Note: Assessment plans do not refer to how students will be graded in the course.

Departments will be asked to summarize their assessment findings as part of the renewal application.

6. Course coordinator. Identify the faculty or staff member who will be responsible for all of the following:
 • serving as the official contact person regarding this course;
 • having detailed knowledge of course content and curriculum;
 • collecting and reviewing syllabi to make sure all sections – including those conducted in an online format – are taught with adherence to the Hallmarks;
 • providing professional development support as needed to instructors teaching the course

____________________________________ __________________ __________________
Course coordinator’s printed name Course coordinator’s email Campus phone

7. Departmental Approval.

____________________________________ __________________ __________________
Department chair’s printed name Department chair’s signature Date

____________________________________ __________________ __________________
Dept. chair’s email Campus address Campus phone

Thank you for your submission. The Foundations Board reviews all proposals to ensure that courses meet the appropriate Hallmarks. If clarification is needed, a board member will contact the course coordinator. If the Foundations Board and the General Education Committee approve the proposal, all sections of the course will be
designated as satisfying the requirement and are expected to remain in compliance of the Hallmarks.

Please contact the General Education Office at 956-6660 or gened@hawaii.edu with any questions.

REFERENCE INFORMATION

FQ STUDENT LEARNING OBJECTIVES
Explanatory notes appear in italics.

Students will be able to:
1. Select an appropriate mathematical approach for a given problem or practical application, and identify relevant quantities or other information for the selected approach;
 - Herein, a “mathematical approach” refers to a set of formulas, models, algorithms, or other mathematical or statistical methods.
 - Selection includes verifying that the assumptions and limitations of a mathematical approach are appropriate for a particular practical problem.

2. Convert relevant quantities/information into the necessary symbolic, numerical, or graphical form as needed for the selected approach;
 - Conversion includes understanding the meanings of individual variables in a given context, and the correct association of quantities with their corresponding variables.

3. Use mathematical approaches successfully, including performing correct chains of algebraic steps, symbolic manipulations, and/or numerical calculations;
 - Successful use also includes knowing the names and understanding the meanings of operational symbols and using them correctly in a given context.

4. Evaluate the validity of a mathematical approach and its conclusions;
 - Evaluation may include: verifying correctness of solutions, where possible; reexamining initial assumptions; assessing reasonableness of numerical results in practical applications or physical contexts; applying other accepted methods of judgment within particular disciplines.

5. Communicate final conclusions in appropriate formats.
 - Appropriate formats may include symbolic expressions, graphs, or written statements.
 - Final conclusion statements should reflect the outcome of deductive or statistical reasoning.

FQ HALLMARKS
Hallmarks appear in bold; explanatory notes appear in italics.

Introduction: FQ courses should strive to impart an appreciation for the relevance and usefulness of quantitative reasoning. We define quantitative reasoning as the ability to apply mathematical concepts to the interpretation and analysis of quantifiable information, expressed numerically or graphically, in order to solve a wide range of problems, from those arising in pure and applied research to everyday issues and questions. It includes the ability to:

• understand and communicate quantitative information using such tools as variables and equations, graphs and charts, words/sentences;
• apply math skills;
• judge reasonableness of results; and
• recognize the limits of mathematical or statistical methods.

The primary goal of FQ courses is to teach mathematical reasoning and tools at the college level. While additional course material (natural science, social science, etc.) can serve as a valuable context for learning these skills, it should not overshadow the primary goal.

To satisfy the FQ requirement, a course will:
1. provide students with theoretical justifications for, and limitations of, mathematical or statistical methods, and the formulas, tools, or approaches used in the course;
2. include application of abstract or theoretical ideas and information to the solution of practical quantitative reasoning problems arising in pure and applied research in specific disciplines, professional settings, and/or daily and civic life;
 • A minimum of 10% of course content (lecture content, homework problems, and exam problems) should include practical examples. Faculty members are encouraged to exceed this.
 • Practical examples might involve a physical situation, professional application, or daily life. Faculty members are encouraged to situate some practical examples in a rich context.
 • Practical examples should be integrated throughout the academic term.

3. provide opportunities for practice and feedback that are designed to help students evaluate and improve quantitative reasoning skills by including a course component at least once per week with a maximum 30:1 student-to-teacher ratio;
 • Examples of acceptable formats include, but are not limited to: small lectures with maximum enrollment of 30 students; large lectures with 30-student-maximum weekly recitation sections, discussion sections, or problem sessions led by trained graduate assistants or trained undergraduate peer-tutors; large lectures with weekly 30-student-maximum supervised computer lab sessions designed to reinforce and practice lecture material.
 • Acceptable training for graduate students and undergraduate peer-tutors may include, but is not limited to, University and/or Departmental start-of-semester TA training, weekly course TA meetings, or other consistent guidance and supervision by faculty.

4. be designed so that students will be able to:
 a. identify and convert relevant quantitative information into various forms such as equations, graphs, diagrams, tables, and/or words;
 b. select appropriate techniques or formulas, and articulate and evaluate assumptions of the selected approaches;
 c. apply mathematical tools and perform calculations (including correct manipulation of formulas);
 d. make judgments, create logical arguments, and/or draw appropriate conclusions based on the quantitative analysis of data, the assumptions made, the limitations of the analysis, and/or the reasonableness of results;
 e. effectively communicate those results in a variety of appropriate formats.
 • Individual practical examples will likely emphasize some aspects of this hallmark while omitting others. However, the course as a whole must ultimately address each aspect of this Hallmark.
 • Hallmark 4 is intended to help students identify the major components or factors involved in an analytical problem and determine the arrangement of evidence in evaluating the problem.