In 1960, the sounds from explosive charges deployed off Perth, Australia were recorded at Bermuda, the antipode to Perth. The acoustic paths traveled by the sound are refracted geodesics. In 1988, calculations that accounted for the horizontal refraction of sound, across the strong fronts of the Southern Ocean in particular, gave the perplexing result that Bermuda was in the shadow of Africa. Others combined the phase speeds of acoustic modes calculated from low-resolution atlases for global sound speed and bathymetry with ray tracing to obtain two viable acoustic paths between Perth and Bermuda, both influenced by bathymetry. From a modern perspective, however, this explanation is not entirely satisfactory. Recent high-resolution ocean state estimates put Perth-to-Bermuda acoustic problem into a new light. The intense, small-scale features captured by these state estimates, e.g., Agulhas rings in the South Atlantic or the Antarctic circumpolar current system, greatly influence the acoustic propagation in a time-dependent way. The antipodal travel time recorded in 1960, 13,382s, is a measure of the ocean temperature averaged along the sound channel axis and across several ocean basins. Global ocean state estimates, constrained by data assimilation of available data, can be used to calculate a present-day travel time. A travel-time change over the past half-century, nominally expected to be about 10 s from recent estimates of upper-ocean ocean warming, is a measure of ocean climate change. We find no measureable change to the ocean’s temperature climate over the past half century within an uncertainty of about 4 s, but this measurement is associated with the depths near the sound channel axis. This result suggests the warming of the upper ocean that has been reported has not penetrated down to the depths of the sound channel axis.